

In 2020, SolarWinds unknowingly distributed malware-infected software to its
customers. The malware, inserted by Cozy Bear, a group linked to the Russian
Foreign Intelligence Service, infiltrated over 18,000 networks and sent sensitive
data to a remote server. This was a very high profile, very advanced software
supply chain attack.

In May 2021, the Biden administration issued Executive Order (EO) 14028 on
Improving the Nation’s Cybersecurity, which included a strong focus on supply chain
security. The order aimed to enhance software supply chain transparency, integrity,
and security following major cyber incidents like the SolarWinds breach. It
mandated new security standards for software sold to the federal government,
requiring vendors to :

In December 2021, the Log4J vulnerability, also known as Log4Shell, exposed a
critical flaw in the widely-used Apache Log4j Java logging library. This zero-day
vulnerability allowed remote code execution, enabling attackers to gain control of
affected systems. The impact was widespread, affecting numerous applications
and services across the globe, leading to significant security breaches and
prompting urgent remediation efforts by organizations worldwide. Given the
activity of the last few years, the software supply chain has been a popular topic of
discussion among practitioners, and an increasing target among cyberattackers.

Provide Software Bill of Materials (SBOM)

Adhere to secure development practices
based on guidance from NIST (National
Institute of Standards and Technology)

18,000+ Networks compromised in SolarWinds

Log4Shell:Affected millions of devices in 24 hours

2020:SolarWinds

Attack

May 2021:Executive

Order 14028

Dec 2021: Log4j

Vulnerability

Despite the attention & importance, the “software supply chain” is one of the many
terms in cybersecurity whose meaning is overloaded . When having conversations
with different cybersecurity leaders, we realize that for some, talk of the securing
the software supply chain implies having SBOM (Software Bill of Materials)
capabilities, for others, it implies using attestations & verification steps to ensure
that code and artifacts have not been tampered with, and yet for

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

04

The EO also called for pilot programs to evaluate trusted software suppliers and
improve incident response coordination across federal agencies and critical

infrastructure. This move signaled a significant shift toward zero-trust architecture
and supply chain risk management as national security priorities.

Guide Roadmap

Defining the Software Supply Chain
Let’s start by defining the software supply chain:

The software supply chain is everyone and everything

that is involved in the development, building,

testing, and deployment of your (software) artifacts.

Note that in this definition we excluded the entire

consumer side of the supply chain. In the case of a

SaaS service or API service, this would be the

runtime environment. This could also be the

software running on a chip in a vehicle. While we

do think that the consumer side is indeed part of

the software supply chain - and indeed it does face

many of the same risks, we keep it out of this

paper for now, for brevity’s sake, and to keep

things focused on the software factory vs. the

operational nature of running a software product.

Explore how BoostSecurity thinks of the software supply chain

Define the unique components that make up your software supply chain

Examine the risks and exploits in each area

Share emerging industry standards

Remember, perfect security never exists. The goal is to first understand the risks,
and then decide on the approach to handle each of them.

others, the image in their head is that of ensuring that malware does not enter their
development and production environments through compromised open source
packages.

You are only as strong as your weakest link
 In 2025, the software supply chain is one of the weakest links

Developers Code Third Party
Components

Develop/
Test/Build

Artifacts

05

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

Let’s start breaking this down.

The big picture:

Developers Code Third Party
Components

Develop/
Test/Build

Artifacts

Exploring Categories of Risk

Developer Risk

Attack Evolution

Risk #1 - Developer account compromise targeted
through phishing, social engineering, malware

In these types of campaigns, attackers pose as interviewers looking to employ
developers, the developers do an interview, and then will be asked to download a
video conferencing app.In this scenario, the app contains malware. We have seen
other variations of this, where the developer is expected to do some work on a
sample software project. Unbeknownst to the developer, by working on that
project, the developer ends up installing malware, which among other things, can
steal credentials and tokens required to access their current employer’s source
code.

Their machine can be compromised through a variety of other means, among which
is installing tools that contain malware (and we have seen many examples in open
source and in closed source products as well). Infostealers will lead to the
compromise of the session cookies for services such as GitHub.

Recently, malicious VSCode Extensions with millions of downloads were pulled from
the marketplace due to them having malware. Machine Learning Models on
HuggingFace were also found containing malware. These models are used directly
by developers and data scientists.

Developers are now direct targets of cyber attacks: the Contagious Interview
(PaloAlto Networks research) campaign labeled as such in 2023, continued to
occur in 2024, and even in 2025 (SentinelOne research).

2022: 
FBI Warning

2023: Contagious

Interview

2024: VS Code

Extensions

An often overlooked, but nonetheless critical part of your supply chain is the
developer, and the machine & services they use to develop code. In some cases,
the developer is an employee of the organization. In other cases, they're external,
either contracted directly by the organizations or through an outsourced
development shop.

06

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed
https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed
https://www.bleepingcomputer.com/news/security/vscode-extensions-with-9-million-installs-pulled-over-security-risks/
https://www.bleepingcomputer.com/news/security/malicious-ai-models-on-hugging-face-backdoor-users-machines/
https://www.bleepingcomputer.com/news/security/malicious-ai-models-on-hugging-face-backdoor-users-machines/

Risk #2 - Insider Threat
Then there’s the insider threat factor; a developer (contractor or employed) with
access to source, build, and potentially even runtime access may be malicious.In
fact, in 2022 the FBI warned about North Korean state workers posing as other
nationals, working in Russia, China, Southeast Asia, and Africa as remote workers
to dozens of Fortune 100 companies.

A CISO recently told us that they hired people based on interview results in a
different country, to do remote work, and learned later that other developers
showed up to do the work.

Of course, your organization may have a more simple version of this - developers
with access to source/IP may act with malicious intent for a variety of reasons
(hacktivism, personal gain, etc). This happened in 2021 in the Crypto DeFi project
SushiSwap, where a malicious commit by a contractor resulted in the theft of $3M
from the chain for the personal benefit of the contractor. In another example, a
developer working for Eaton corporation inserted malware into their production
systems. In the event he was ever let go and his active directory account was
terminated, the systems would lock up across the organization.

07

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

EXECUTIVE SNAPSHOT:

DEVELOPER SECURITY THREATS

Real threat: Contagious Interview campaign
targeting your developers

 ACCOUNT COMPROMISE (Risk #1)

Attack vector: Malicious "video conferencing
apps" during fake job interviews

Recent Examples: Compromised VSCode
Extensions (millions of downloads)

Real threat: Malicious employees or
contractors with system access

Attack vector: North Korean state workers
posing as remote employees

Recent Examples: Eaton corporation malware,
SushiSwap $3M theft

 ️INSIDER THREAT (Risk #2)

https://www.cybersecuritydive.com/news/north-korea-it-workers-insider-threat/727892/
https://arstechnica.com/information-technology/2021/09/cryptocurrency-launchpad-hit-by-3-million-supply-chain-attack/
https://arstechnica.com/information-technology/2021/09/cryptocurrency-launchpad-hit-by-3-million-supply-chain-attack/
https://arstechnica.com/information-technology/2021/09/cryptocurrency-launchpad-hit-by-3-million-supply-chain-attack/
https://www.theregister.com/2025/03/08/developer_server_kill_switch/
https://www.theregister.com/2025/03/08/developer_server_kill_switch/

EXECUTIVE SNAPSHOT: 1st PARTY CODE RISKS

Risk #3 - Writing insecure code or designing
insecure systems - unintentionally

Risk #5 - IP theft
Compromised developer tokens can lead to source code theft. When a malicious
insider discovers they have access to source code repositories that they shouldn’t,
source code theft is often the result.

Just as “all software has bugs”, all software will have security flaws, too. Various
forms of testing in addition to threat modeling are needed to uncover these
unintentional vulnerabilities introduced in the normal course of development.
Think AppSec, Static or Dynamic Analysis (SAST/ DAST) or other forms of
security testing to uncover these bugs and eliminate them.

Risk #6 - Credential theft
We know that stolen secrets are often the cause of a security breach, and
unfortunately, hardcoded secrets in the development process remain more
common than they should. In 2023, close to 13M secrets were detected in public
GitHub commits. At BoostSecurity, we can confirm that the same problem exists in
private repositories.

Risk #4 - Inserting malicious code into the

project - intentionally
We stated earlier that there are several scenarios in which a developer account
can be compromised (fake interview campaigns, malware) or in which there is an
insider threat. Regardless of the origin event, the impact is that malicious code
may be inserted in the project, perhaps in the form of a backdoor.

Reality:

Solution needed:

Best practice:  

 All software
inevitably contains
security vulnerabilities.

 AppSec,
Static/Dynamic Analysis
(SAST/DAST)  

Implement security testing
in development workflow

 UNINTENTIONAL
SECURITY FLAWS

(Risk #3) Impact:

Example:

Attack Vector:

 Backdoors that
can lead to major
breaches 

 Bybit wallet hack
($1.4B loss) in February
2025  

Developer
account compromise led to
malicious code injection

 MALICIOUS CODE
INSERTION (Risk #4)

Problem:

Consequence:

IP & CREDENTIAL THEFT: 

 13M secrets
detected in public GitHub
commits in 2023

 Source code
theft when attackers
access repositories 

Hardcoded secrets in
development remain too
common

 UNINTENTIONAL
SECURITY FLAWS (Risk #3)

CASE STUDY: $1.4B ByBit Hack (2025)

In February, the Bybit Crypyto hack started with the compromise of a developer,
with what is believed to be either a phishing or a social engineering tactic. The
hackers used the developer’s compromised machine to inject malicious source
code into the code repository, conducted the hack, then removed the code.

08

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

https://www.gitguardian.com/state-of-secrets-sprawl-report-2024
https://www.gitguardian.com/state-of-secrets-sprawl-report-2024

A recent Stanford University study found that participants

with AI assistant were�

� More likely to introduce security vulnerabilities for the majority of
programming tasks�

� More likely to rate their insecure answers as secure compared to
those in the control group

� Producing code with security issues that they failed to recogniz�
� Proprietary IP was placed into LLM'�
� This raised questions about whether this IP can be served to other

user�
� This happened at Samsung in 202�
� Demonstrates real risks of IP exposure when using AI coding tools

Research Finding: Stanford University

Lack of Application Context�
� LLMs lack context about the overall applicatio�

� Cause code snippets to incorporate bold assumption�

� Cannot understand the broader system requirements

Missing Threat Model Thinking�
� AI tools lack system threat model thinking in their desig�

� Generate code without security consideration�

� Higher volume of code + more security issues per line =

more vulnerabilities overall

Key Issues

with AI Coding
Assistants:

Implement additional security scanning for AI-generated code
and establish clear AI usage policies to prevent IP exposure.Recommendation

09

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

AI assistants increase code volume but
introduce more security vulnerabilities

EXECUTIVE INSIGHT: AI CODING RISKS

Developers overestimate the security of
AI-generated code (Stanford study)

LLMs lack system-level context and threat
modeling
Proprietary IP can be unintentionally
exposed (Samsung case)

This area is what most people tend to think of as the collective “Software Supply
Chain”. We all use OSS packages and container images and given that prevalent
use, the risks inherent in these pieces of 3rd party software are more or less
understood these days.

License risks may create legal exposure during
M&A or through GPL violations

EXECUTIVE INSIGHT: 3RD PARTY RISKS

Most reported vulnerabilities are not
exploitable in your specific context

Focus on vulnerabilities with high EPSS scores
and confirmed reachability

Risk #7 - License Risk

OSS packages come in all sorts of license flavors, including restrictive licenses such
as GPL. In many organizations, checking for license issues is done frequently, even
at every commit. This activity also occurs in M&A transactions, where the acquiring
company wants to understand any legal risk involved in the acquired company.

Risk #8 - Critical Risk
3rd party components, be they open source or not, may have known vulnerabilities
associated with them. Software Composition Analysis and Container Scanning
solutions are used to detect these types of vulnerabilities. SBOM's can be used to
understand what CVE's exist in a particular artifact as well.

Hence, the current best practice revolves around the idea of narrowing in on
exploitable vulnerabilities and providing clear remediation guidance to the right
person.

THE VULNERABILITY CHALLENGE

The typical challenge companies face when looking at known vulnerability
risk is primarily around�
� Triaging the sheer volume of reported vulnerabilitie�
� Understanding which are exploitable (the vast majority are not�
� Resolving these issues

10

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

Reachability analysis is the type of analysis performed that tries to distinguish
between CVE presence and CVE exploitability. Reachability aims to determine
whether an application is actually vulnerable to a particular CVE; the idea being
that if a vulnerability exists in a library, but the application using the library does
not make use of the vulnerability path, then the application is not necessarily
vulnerable.

Another one would be the CISO KEV - which tracks known frequently exploited
vulnerabilities, although the emphasis is less on open source packages, and rather
more on commercial off-the-shelf applications and larger systems. If you find such
a package in your applications you have to investigate the possibility of an exploit
that has already happened.

What is Reachability Analysis?

CISO KEV
EPSS helps you prioritize which vulnerabilities the team should work on first, as
ones with a high EPSS score can be considered to be riskiest. However, EPSS should
NOT be the only criteria of prioritization: whether the vulnerability is actually
reachable by attackers, reached in the code, and its impact if exploited, are among
many factors that have to be weighed when determining the priority.

PRIORITIZATION BEST PRACTICES

� Reported exploits in known threat feeds�
� Availability of public exploit cod�
� Whether or not the vulnerability is discussed in mailing lists or

websites such as CISA KEV, Google’s Project Zero, Trend
Micro’s Zero Day Initiativ�

� Age of the vulnerability

What is the EPSS score? EPSS stands for
exploit prediction scoring system, and is a
percentage that is assigned to a
vulnerability, meant to indicate the
likelihood that the vulnerability will be

There are many different types of reachability analysis: using static analysis
to determine if the vulnerable code is called, using runtime analysis to
determine if the module with the vulnerable function is loaded into memory,
or even called in certain applications. There are even approaches that
leverage LLM’s to try to determine reachability.

TYPES OF REACHABILITY ANALYSIS:

REACHABILITY EPSS SCORE

KEY ASSESSMENT FACTORS

UNDERSTANDING THE EPSS SCORE

Reachability is only one metric to help with inferring exploitability, the
other is looking at whether or not a particular CVE is being actively
exploited in the wild. The EPSS score is such a metric.

used by attackers in the next 30 days. The formula to calculate the percentage
takes into account factors such as:

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

11

https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.first.org/epss/

In 2021, a Ruby change in a library called mimemagic resulted in the breaking of
hundreds of thousands of applications. Something similar happened in the
Javascript ecosystem when a developer deleted a project in protest. That project
was used by many projects in turn, and this act broke large portions of the internet.

The open source world is full of wonderful projects. However, not all of them are
properly maintained, or have high quality standards. To infer the quality of a
project, one can look at the download stats as well as the volume of development
activity in the project - for example, are bugs reported

Certain versions of a project become end-of-life. When this occurs, they stop receiving support and security fixes. It is almost always better to only use software that is
still maintained. Hence you want to ensure that you are aware of any projects that are already, or are soon going to be, end of life.

There is wide collaboration in both industry and the open source ecosystem to address these types of flaws. There are features
being built directly into the open source registries to ensure that such malicious entries are either prevented, or detected early.

Specific examples helping to address these risks include:

Package Repository Security

Package repositories implementing built-in security scanning capabilities

Best Practices Publications

OpenSSF’s Software Development Best Practices publications

Alpha-Omega Project

Alpha-Omega project scans and and monitors the most critical open
source software projects and ecosystems

Cryptographic Verification

Cryptographically signing and verifying packages and making it relatively
easy to check for validity of package

Collaborative Defense

To infer the quality of a project, one can look at the download stats as well as the
volume of development activity in the project - for example, are bugs reported
being addressed, the size and activity of the contributors to the project, to name a
few.

Another consideration is whether or not the different projects are configured with
basic security best practices. The OpenSSF scorecard is a great project that helps
to achieve some of these goals. Anyone can can easily view the scorecard of a
project on https://deps.dev

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

12

https://www.techradar.com/news/this-popular-code-library-is-causing-problems-for-hundreds-of-thousands-of-devs
https://www.techradar.com/news/this-popular-code-library-is-causing-problems-for-hundreds-of-thousands-of-devs
https://simpleprogrammer.com/one-programmer-broke-internet/#:~:text=Azer%20Ko%C3%A7ulu%20disrupted%20thousands%20of,source%20software%20written%20in%20JavaScript.
https://endoflife.date/
https://best.openssf.org/
https://alpha-omega.dev/
https://scorecard.dev/
https://deps.dev

Simply uploading a malicious package and tricking users into installing via a
variety of means. Examples of this include warbeast2000 and kodiak2k which
was outright theft of developer ssh keys.

Attackers have figured out that
inserting malware into the open
source ecosystem is an effective
way of compromising a lot of
developer accounts and even
production environments.

Malicious Uploads

Stealing a project developers credentials Abusing a vulnerability in the build
environment of the package

Credential Theft

Leveraging typosquating opportunities - attackers can add clone projects of well
known projects, with only slightly different names. All the developer has to do to fall
victim to this type of attack is to reference the typosquat version of the package.

Typosquatting

Re-registering de-commissioned project names - Open source packages are
created every day, but every now and then, a project will get deleted. When this
happens, the project is removed from the central registry (such as pypi and npmjs)
however, there may be many applications that still depend on it. This attack occurs
when an attacker re-registers a project name, recreating it with malware included.

Recreating Deleted Projects

Dependency Confusion - many software teams have their own packages that they
develop and re-use across an organization. For example, a company may develop a
“company-authentication” package that is to be used across the various teams.
More often than not, these packages are hosted on internal package registries.
However, in certain circumstances, if a package with a similar name exists on public
registries, such as npm or pypi, hose external packages can be used during the
build process.

Dependency Confusion

Gaining the trust of the project maintainers, getting rights to contribute to the code
base, and then acting maliciously → the near miss of xz-utils which could have been
the biggest cyber breach in history had it gone unnoticed. Jia Tan, the “name” of the
developer (that was never caught) - spent 2 years working positively on an
important, and widely used project, before inserting malicious code into it.

Trust Exploitation

800K
Malicious

Packages

Open
Source
Ecosystem

Attackers are able to insert malware into open
source packages in a variety of ways:

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

13

https://www.darkreading.com/vulnerabilities-threats/beware-the-package-typosquatting-supply-chain-attack
https://www.bleepingcomputer.com/news/security/revival-hijack-supply-chain-attack-threatens-22-000-pypi-packages/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know

This part of the software supply chain is the big blindspot of the software
factory. The vast majority of software being developed today, leverages
source code management systems, continuous integration tools, and
continuous deployment tools. In most cases that we see, additional
infrastructure such as artifact registries are also used.

From a security standpoint, in our opinion this is the least understood,
and most insecure part of the software supply chain. For the past
two decades, agile development and devops practices took over the software
development world, leading to an enormous amount of infrastructure being
used to automate the software development process. Awareness around
insecure configuration and usage of this infrastructure is still very low.
Attackers, on the other hand, are becoming more and more aware of the
various ways in which they can attack this particular surface.

The SCM systems are all extendable via some form of plugin or app mechanism. For
example, at the time of this writing, there are over 6000 GitHub Apps (over 1000
listed on the marketplace). These apps vary in quality - some are by verified
publishers, while others are not. What we typically see in organizations is many
apps are installed by developers, because they offer useful functionality - without
consideration to the security risk they bring. For example, many apps will require
reading and/or writing source code permissions where they are installed.

The source code management system you use, whether GitHub, GitLab, Azure
DevOps, BitBucket, etc, can be improperly configured from a security standpoint.
Why does this happen�

� Lack of knowledg�
� These systems develop new security capabilities over time; and people don’t
always find the time to go back and leverage the security enhancement�

� No consistency around configuration; Employees move around and bring
different ways of setting up projects and systems

SCALE OF THREAT

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

14

A GitHub app by a verified publisher just means that the
domain name has been verified, that the developer of that
app uses Two-Factor Authentication, and that there is a way
to contact the publisher. It does not say anything about the
security or safety of using that app.

What is a GitHub Verified Publisher?

Verified

Publisher

Continuous Integration and Continuous deployment systems, such as GitHub
Actions, GitLab pipelines, CircleCI, Jenkins, ArgoCD, and Terraform, automate the
software development process, but their configuration settings can inadvertently
introduce security vulnerabilities. Misconfigured CI systems can expose sensitive
information, allow unauthorized code changes, or even provide a pathway for
attackers to compromise the entire software supply chain. These misconfigurations
can arise from various reasons, including a lack of understanding of security best
practices, failure to update configurations as security capabilities evolve, or
inconsistencies introduced by employee turnover. Consequently, a seemingly
efficient CI system can become a significant security risk if not properly secured.

Another way to extend these systems is through leveraging their webhook
capabilities. An attacker (malicious insider, or attacker that managed to
get access to developer account) can register a webhook that sends code
base updates to a server under their control, enabling them to receive IP
well after the account access is removed.

inadequate access controls, which allow unauthorized
users to modify pipelines or deploy code

insufficient logging and monitoring, which makes it hard
to detect and respond to incidents

Insecure pipelines that are not validated, allowing
attackers to inject malicious steps or code

Some examples of such misconfigurations include:

First party code: code your developers wrote

3rd party code: code your developers brought in

Pipeline workflow code is just code. It is the
application that builds your application. Since it is
just code, it can contain vulnerabilities. Just like
application code, it needs to be tested for
vulnerabilities. Just like your applications, it
includes:

Both can contain vulnerabilities.

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

15

CI/CD systems have plugin and extension mechanisms, which developers take
advantage of. For example, GitHub workflows are written using many of the
12,000 3rd party GitHub actions. CircleCI workflows leverage many of the
3,700 3rd party orbs. These extensions can have vulnerabilities, or could be
compromised with malware as well. On the Continuous Deployment side,this
risk includes systems like ArgoCD, and Terraform for cloud infrastructure.

Most organizations with sufficient software activity have their own internal artifact
registries, or use SaaS versions of them. These registries store various artifacts for
building or deployment. Examples of such registries include:

ATTACK SCENARIOS

An example of this is the Codecov supply chain attack from a
few years ago. The Codecov bash uploader script was modified
by attackers to exfiltrate CI environment variables which often
contain secrets. This allowed attackers to steal secrets from
Codecov customers

� DockerHub, Quay.i�
� JFrog artifactor�
� Amazon ECR, Google Artifact
Registr�

� GitHub Packages, GitLab
Package Registry

Registry Examples:

Misconfiguration Risks:

If these repositories are misconfigured, or if the tokens required to access
them are in the wrong hands, attackers may be able to:

Directly upload artifacts modified with malware Steal IP by downloading the artifacts

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

16

These registries will contain either
the building blocks of the application
(container base images, open source
packages), and/or the finished
artifacts for deployment. You need
to ensure that only trusted software
is deployed into these repositories.

Registry Risks:

https://github.com/marketplace?type=actions
https://blog.gitguardian.com/codecov-supply-chain-breach/

In addition to viewing risks across your supply chain as we described above, you’ll
also want to consider code based specific risk nuances. For example, the risks of
writing an API interface are very different from the risks of embedding a binary
(firmware) into your product.

Hence, to truly get a complete understanding of the risks of the supply chain,
you will need to understand “What type of code is this? What kinds
of risks is it exposed to?”

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

17

API

If your codebase exposes an API, and chances are that if it is a newer
application, then it does (because of API first architectures, or wanting an
integration plane) - then you want to consider risks described in the
OWASP API Top 10.

AI Components

If your application leverages AI technologies and services (be it Generative/
LLM or Predictive/ML), then you will want to consider AI specific risks. There
are many AI risk models out there, but commonly referenced ones would be
the OWASP LLM Top 10 and OWASP ML Top 10. Risks vary from attackers
inserting bad data into the model, to prompt injection, to supply chain
attacks on these models, and much, much more. We have a lot more to say
about this topic, but we will leave that for a future blog.

SaaS

Applications that use 3rd party SaaS services (think payment services,
authentication services, and so on) - could be vulnerable to . At a minimum,
you would probably want to know which 3rd party services are used by
your applications, to be able to determine if you are affected in any way by
a breach. A recent case in point is the Snowflake breach.

Binary Artifacts

This may be less common in pure software applications, but is seen more in
manufacturers (computers, toys, medical devices, security devices, lab
equipment, phones, etc). The supply chain will include certain binary
components (firmware, an entire OS image, etc). These binary components
carry their own risk; they can include malware (intentional, or not), include
known vulnerabilities, code with restrictive licensing, or even end-of-life
(and unmaintained) software.

https://owasp.org/API-Security/editions/2023/en/0x00-header/

Don’t stop at the SBOM. Instead, work to identify a purpose

built software supply chain security solution that extends

beyond application code to address risks across the entire

Software Development Lifecycle (SDLC). One that encompasses

third-party dependencies, libraries, tools and infrastructure for

a more comprehensive view of your risks, leverages advanced

technology and applications to reduce alert noise through

reachability analysis, and plugs seamlessly into your developer

tech stack and workflow.

We hope that this guide helps you understand in practical terms what sorts of
supply chain risks your software development organization is exposed to. 
Far too frequently, leaders believe that having SBOMs in place and OSS package
or container scanning is sufficient for securing the software supply chain. 
To truly secure your development organization against these emerging threats, one
must take a much more comprehensive view.
 

Start by recognizing the risks facing different parts of the supply chain, from the
developers, through to the source code they write, to the open source they use, to
the development infrastructure that is used to develop, test, and release, and
finally ending with the artifacts. This guide gives you a list to work with your teams
on.
 

A number of best practices and standards are outlined below that address
different parts of securing the software supply chain. Furthermore, solutions like
BoostSecurity offer a comprehensive solution to mitigate these risks.

This guide gives you a list to work with your teams on.

A number of best practices and standards are outlined below that address
different parts of securing the software supply chain. Furthermore, solutions like
BoostSecurity offer a comprehensive offering to mitigate these risks.

Developers Source Code Open Source Infrastructure Artifacts

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

18

Additional References: Security Standards

Over the past few years, several security standards emerged to address the challenges facing our industry in securing the software development process. The
following is a list of a few of the most well known:

SLSA:

A security framework with a list of controls to prevent tampering and

secure packages and infrastructure.

CNCF Secure Software Factory:

A reference architecture for securing the software supply chain

CNCF Supply Chain Security Best Practices:

Set of best practices that encompass securing the software development process

CIS Supply Chain Benchmark:

List of controls for securing your development infrastructure.

NIST 800-218 (Secure Software Development Framework - SSDF):

A very comprehensive set of recommended practices designed to help organizations
reduce the risk of vulnerabilities in software and improve the security of the software
supply chain.

NSA & CISA’s Cybersecurity Information Sheet on
Defending CI/CD Environments:

Information sheet describing the emerging CI/CD attack surface, and the

best practices to secure it.

Secure Supply Chain Consumption Framework:

A framework for securely consuming OSS projects.

Secure Software Attestation Form:

A form that has to be completed by the CEO of an organization attesting to the fact that

the software produced in the organization is built using what is considered to be essential

secure software best practices.

CISO & CTO Guide to Supply Chain Security: Securing the Software Factory www.boostsecurity.io

19

https://slsa.dev/
https://github.com/cncf/tag-security/blob/main/community/working-groups/supply-chain-security/secure-software-factory/Secure_Software_Factory_Whitepaper.pdf
https://github.com/cncf/tag-security/blob/main/community/working-groups/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://www.cisecurity.org/benchmark/software-supply-chain-security
https://www.cisa.gov/resources-tools/resources/nist-sp-800-218-secure-software-development-framework-v11-recommendations-mitigating-risk-software
https://media.defense.gov/2023/Jun/28/2003249466/-1/-1/0/CSI_DEFENDING_CI_CD_ENVIRONMENTS.PDF
https://media.defense.gov/2023/Jun/28/2003249466/-1/-1/0/CSI_DEFENDING_CI_CD_ENVIRONMENTS.PDF
https://www.microsoft.com/en-us/securityengineering/sdl/s2c2f
https://www.cisa.gov/secure-software-attestation-form

